bing

Steel

Understanding Blade Steel: Your Definitive Guide to Becoming an Expert

 

Acciaio Inox % Carbonio % Cromo % Molib. % Vanadio % Mangan. % Nickel % Silicio % Cobalto % Fosforo % Tung. % Niobio HRC Voto
                             
420 SI 0,4 / 0,5 12 / 14             0,05     54 / 56 6
1050 NO 0,45 / 0,55       0,75             58 / 60 6
5160 NO 0,56 / 0,64 0,7 / 0,9     0,75 / 1   0,15 / 0,3   0,035     58 / 60 6
12C27M SI 0,52 14,5     0,35   0,35   0,025     54 / 56 6
420J2 SI 0,15 12 / 14     1             54 / 56 6
MA5M SI 0,4 / 0,5 13,5 / 15 0,50 / 1 0,2 0,02 / 0,4   0,20 / 0,35         54 / 56 6
VG5 SI 0,8 14 0,4 0,2               59 / 60 6
1095 NO 0,9 / 1,05       0,3 / 0,5       0,04     58 / 60 6,5
12C27 SI 0,6 13,5     0,35   0,35   0,025     54 / 56 6,5
13C26 SI 0,68 13     0,35   0,35   0,025     56 / 58 6,5
440A SI 0,6 / 0,75 16 / 18 0,75   1   1   0,04     56 / 58 6,5
440B SI 0,75 / 0,95 16 / 18 0,75   1   1   0,04     55 / 57 6,5
AUS-6 SI 0,55 / 0,65 13 / 14,5   0,1 / 0,25 1 0,49 1   0,04     56 / 58 6,5
AUS-8 SI 0,7 / 0,75 13 / 14,5 0,1 / 0,3 0,1 / 0,25 1 0,49 1   0,04     56 / 58 6,5
DNH7 / XC75 NO 0,75       0,70   0,25         58 / 60 6,5
GIN-5 SI 0,6 / 0,7 12,7 / 13,7     0,45 / 0,80   0,2 / 0,5         60 / 61 6,5
LV-03 SI 0,95 13,5     0,65             58 / 60 6,5
VG2 SI 0,6 / 0,7 13 / 15 0,1 / 0,2   0,5 0,15 0,5   0,03     57 / 58 6,5
X-15TN SI 0,4 15,5 2 0,3         0,017     57 / 59 6,5
440C SI 0,95 / 1,2 16 / 18 0,75   1   1   0,04     58 / 59 7
AUS-10 SI 0,95 / 1,10 13 / 14,5 0,1 / 0,3 0,1 / 0,25 1 0,49     0,04     58 / 59 7
CTS-BD1 SI 0,9 15,75 0,30 0,10 0,60   0,37         60 / 61 7
GIN-1 SI 0,9 15,5   0,3 0,6   0,37         57 / 59 7
LV-04 SI 0,95 18 1,15 0,1 0,07             55 / 58 7
VG1 SI 0,95 / 1,05 13 / 15 0,2 / 0,4     0,25           58 / 59 7
VG7 SI 1 14 0,3 0,2           1,3   62 / 64 7
154-CM SI 1,05 14 4   0,5   0,3         58 / 60 7,5
ATS-34 SI 1,05 14 4   0,4   0,35   0,03     58 / 60 7,5
ATS-55 SI 1 14 0,6   0,5   0,4 0,4       58 / 60 7,5
N690Co SI 1,05 / 1,1 17 1,1 0,1 1   1 1,5       58 / 60 7,5
O1 NO 0,85 / 1 0,4 / 0,6   0,30 1 / 1,40 0,3 0,5         60 / 62 7,5
W1 NO 0,7 / 1,5 0,15 0,1 0,1 0,1 / 0,4 0,2 0,1 / 0,4     0,1   60 / 62 7,5
W2 NO 0,85 / 1,5 0,15 0,1 0,15 / 0,35 0,1 / 0,4 0,2 0,1 / 0,4     0,15   61 / 63 7,5
CPM-20CV SI 1,9 28 / 32 1 4 0,3 3       0,6   58 / 60 8
A2 NO 0,95 / 1,05 4,75 / 5,50 0,9 / 1,40 0,15 / 0,50 1 0,30           58 / 61 8
BG-42 SI 1,15 14,5 4 1,2 0,5             58 / 61 8
Calmax NO 0,6 4,5 0,5 0,2 0,8   0,35         62 / 64 8
CPM-S60V SI 2,15 17,5 0,5 5,75 0,5   0,5         58 / 60 8
CPM-S90V SI 2,3 14 1 9               56 / 58 8
H1 SI 0,15 14 / 16 0,5 / 1,5   2 6 / 8 3 / 4,5   0,04     58 / 60 8
M4 NO 1,4 4,75 5,5 4,5   0,3 0,45     6,5   60 / 62 8
Niolox SI 0,8 12,7 1,1 0,9             0,7 60 / 61 8
VG10 SI 0,95 / 1,05 14,5 / 15,5 0,9 / 1,2 0,1 / 0,3 0,5   0,6 1,3 / 1,5 0,3     58 / 60 8
Aogami NO 1,40 / 1,50 0,30 / 0,50 0,30 / 0,50 0,50 0,20 / 0,30   0,10 / 0,20   0,025 2 / 2,50   64 / 66 8,5
CoS Laminato SI 1,1 16 1,5 0,3        2,5   0,3   61 / 62 8,5
Cowry-Y SI 1,25 14,5 3 1             0,3 62 / 64 8,5
CPM-154CM SI 1,05 14 4                 60 / 62 8,5
CPM-3V NO 0,8 7,5 1,3 2,75               60 / 62 8,5
CPM-M4 NO 1,42 4 5,25 4 0,4 0,3 0,45     5,5   62 / 64 8,5
CPM-S30V SI 1,45 14 2 4               58 / 60 8,5
CPM-S35VN SI 1,40 14 2 3             0,5 59 / 61 8,5
CTS-XHP SI 1,60 16 0,80 0,45 0,50 0,35 0,40       0,35 60 / 61 8,5
CTS-BD4P SI 1,00 / 1,05 14 4 0,1 0,5 / 1   1   0,04 0,10   60 / 62 8,5
D2 NO 1,4 / 1,6 11 / 13 0,7 / 1,2 1,1   0,30 0,6         58 / 61 8,5
M2 NO 0,85 4,2 5 2,25 / 2,75 0,25         5 / 6,75   60 / 62 8,5
RWL-34 SI 1,05 14 4 0,2 0,5   0,5         58 / 60 8,5
SGPS SI 1,4 15 2,8 2 0,4   0,5   0,03     61 / 63 8,5
Shirogami NO 1,3       0,2   0,1   0,025     63 / 64 8,5
Sleipner NO 0,9 7,8 2,5 0,5 0,5   0,9         61 / 63 8,5
Vanadis 23 NO 1,28 4,2 5,0 3,1           6,4   63 / 65 8,5
Vanadis 4 NO 1,4 4,7 3,5 3,7 0,4   0,4         60 / 61 8,5
CTS-204P SI 1,90 20 1 4 0,35   0,6     0,65   60 / 62 9
Elmax SI 1,7 17 1 3 0,3   0,4         61 / 63 9
M390 SI 1,90 20 1 4 0,30   0,70     0,60   60 / 62 9
YXR7 NO 0,8 5 5 1,1           1,1   64 / 66 9,5
Cowry-X SI 3 20 1 0,3               64 / 67 9,5
ZDP-189 SI 3 20                   63 / 67 9,5
                             
Acciaio Inox % Carbonio % Cromo % Molibdeno % Vanadio % Mangan. % Nickel % Silicio % Cobalto % Fosforo % Tung. % Niobio HRC Voto

 

The quality of steel is the basis for achieving maximum effectiveness and durability of a blade made for cutting tools (knives, scissors, precision or surgical scalpels, etc.). It is important that the steel is hard so that it maintains a sharp edge for a long time, but at the same time, it must be flexible enough to bend without breaking. It is also essential that it is stainless, meaning it has good corrosion resistance. These steel qualities can only be obtained using excellent and high-quality raw materials. The materials commonly used by the best knife manufacturers for blades are chromium-hardened steels with high carbon content, "AISI (American Iron and Steel Institute) 440 and AISI 420", in other words, martensitic stainless steels, which contain at least 12% chromium, whose potential can be developed with an appropriate construction cycle and heat treatment.

MARTENSITIC STEELS

Martensitic steels are iron, carbon, and chromium alloys, to which other elements, such as vanadium, molybdenum, nickel, and tungsten, are often added to improve and increase corrosion resistance, hardness, and toughness. The best distribution, combination, and fusion of these elements with each other allow for the creation of high-quality steel. To make the most of the potential of martensitic stainless steel, heat treatment or tempering is used.

TEMPERING

Alloy steel develops specific properties according to the characteristics that want to be emphasized based on use. Generally, what transforms alloy steel into optimal steel for cutlery is heat treatment (tempering and annealing). Each alloy steel is characterized by a critical temperature at which the crystalline structure of the steel changes, increasing the solubility of carbon in the ferritic matrix: this temperature must be maintained to achieve steel austenitization but not so much as to favor the growth of grain size (which, especially for knife blades, is preferred to be kept low). The next step is to cool the temperature abruptly (tempering operation) using various means (water, oil, saline emulsions, ice, air, etc.) to achieve the desired hardness level. At this point, the steel is very hard but also very brittle: to obtain a good compromise between hardness (which translates into a longer-lasting edge) and reduced brittleness (which translates into greater resistance to impacts), a second heat treatment (annealing operation) is always performed, the purpose of which is to relax the material subjected to the internal constraint state induced by tempering and remove residual tensions. It should be noted that an increase in hardness increases the permanent deformation point (i.e., the point after which the deformation of the material changes from elastic to plastic) and increases the breaking point under tension, but decreases impact resistance and ductility. Conversely, an increase in toughness and elasticity translates into greater ability to absorb impacts, greater ductility and workability, but also a decrease in the deformation point. It is clear from these examples that if the steel under treatment is intended for the production of swords or machetes, the latter aspect will be favored with less drastic tempering and more advanced annealing to avoid easy breaks due to impacts, and vice versa if the steel will be used for the production of knife blades, where impact is rare but cutting is frequent, drastic tempering and annealing will be used just enough to relax the material, intending to maintain hardness at the highest possible level. An excellent yardstick for evaluating these aspects is the Rockwell hardness test.

CORROSION RESISTANCE

Martensitic steels are alloys of iron, carbon, and chromium, to which other elements such as vanadium, molybdenum, nickel, and tungsten are often added to improve and increase corrosion resistance, hardness, and toughness. The best distribution, combination, and fusion of these elements with each other allow for the creation of high-quality steel. To make the most of the potential of martensitic stainless steel, heat treatment or tempering is used.

MAIN ELEMENTS CHARACTERIZING STEELS

Carbon Increases the edge's durability and raises the elasticity point. Increases hardness and enhances fatigue resistance to abrasion.

Chromium Increases hardness, elasticity, and toughness. Contributes to fatigue resistance and corrosion resistance.

Cobalt Increases strength and hardness and allows resistance to high temperatures. Multiplies the effects of other alloy elements.

Copper Increases corrosion resistance. Increases fatigue resistance.

Manganese Increases the ability to raise hardness. Deoxidizes and degasses metals during heat treatments. In large quantities, it increases hardness and decreases brittleness.

Molybdenum Increases toughness, hardening capacity, and fatigue resistance. Increases workability and corrosion resistance.

Nickel Increases strength, hardness, and corrosion resistance.

Phosphorus Decreases brittleness if in high concentrations. Increases strength, workability, and hardness.

Silicon Increases ductility, elasticity, and deoxidizes and degasses many metals.

Sulfur Increases workability when used in small quantities.

Tungsten Increases strength, hardness, and toughness.

Vanadium Increases strength, hardness, and impact resistance. Inhibits grain growth.





ecommerce sicuro